114 research outputs found

    A Comparative Evaluation of Deep Learning Techniques for Photovoltaic Panel Detection From Aerial Images

    Get PDF
    Solar energy production has significantly increased in recent years in the European Union (EU), accounting for 12% of the total in 2022. The growth in solar energy production can be attributed to the increasing adoption of solar photovoltaic (PV) panels, which have become cost-effective and efficient means of energy production, supported by government policies and incentives. The maturity of solar technologies has also led to a decrease in the cost of solar energy, making it more competitive with other energy sources. As a result, there is a growing need for efficient methods for detecting and mapping the locations of PV panels. Automated detection can in fact save time and resources compared to manual inspection. Moreover, the resulting information can also be used by governments, environmental agencies and other companies to track the adoption of renewable sources or to optimize energy distribution across the grid. However, building effective models to support the automated detection and mapping of solar photovoltaic (PV) panels presents several challenges, including the availability of high-resolution aerial imagery and high-quality, manually-verified labels and annotations. In this study, we address these challenges by first constructing a dataset of PV panels using very-high-resolution (VHR) aerial imagery, specifically focusing on the region of Piedmont in Italy. The dataset comprises 105 large-scale images, providing more than 9,000 accurate and detailed manual annotations, including additional attributes such as the PV panel category. We first conduct a comprehensive evaluation benchmark on the newly constructed dataset, adopting various well-established deep-learning techniques. Specifically, we experiment with instance and semantic segmentation approaches, such as Rotated Faster RCNN and Unet, comparing strengths and weaknesses on the task at hand. Second, we apply ad-hoc modifications to address the specific issues of this task, such as the wide range of scales of the installations and the sparsity of the annotations, considerably improving upon the baseline results. Last, we introduce a robust and efficient post-processing polygonization algorithm that is tailored to PV panels. This algorithm converts the rough raster predictions into cleaner and more precise polygons for practical use. Our benchmark evaluation shows that both semantic and instance segmentation techniques can be effective for detecting and mapping PV panels. Instance segmentation techniques are well-suited for estimating the localization of panels, while semantic solutions excel at surface delineation. We also demonstrate the effectiveness of our ad-hoc solutions and post-processing algorithm, which can provide an improvement up to +10% on the final scores, and can accurately convert coarse raster predictions into usable polygons

    FTIR spectral signatures of mouse antral oocytes: Molecular markers of oocyte maturation and developmental competence

    Get PDF
    AbstractMammalian antral oocytes with a Hoescht-positive DNA ring around the nucleolus (SN) are able to resume meiosis and to fully support the embryonic development, while oocytes with a non-surrounded nucleolus (NSN) cannot. Here, we applied FTIR microspectroscopy to characterize single SN and NSN mouse oocytes in order to try to elucidate some aspects of the mechanisms behind the different chromatin organization that impairs the full development of NSN oocyte-derived embryos. To this aim, oocytes were measured at three different stages of their maturation: just after isolation and classification as SN and NSN oocytes (time 0); after 10h of in vitro maturation, i.e. at the completion of the metaphase I (time 1); and after 20h of in vitro maturation, i.e. at the completion of the metaphase II (time 2). Significant spectral differences in the lipid (3050–2800cm−1) and protein (1700–1600cm−1) absorption regions were found between the two types of oocytes and among the different stages of maturation within the same oocyte type. Moreover, dramatic changes in nucleic acid content, concerning mainly the extent of transcription and polyadenylation, were detected in particular between 1000 and 800cm−1. The use of the multivariate principal component–linear discriminant analysis (PCA–LDA) enabled us to identify the maturation stage in which the separation between the two types of oocytes took place, finding as the most discriminating wavenumbers those associated to transcriptional activity and polyadenylation, in agreement with the visual analysis of the spectral data

    FT-IR spectroscopy supported by PCA–LDA analysis for the study of embryonic stem cell differentiation

    Get PDF
    As recently pointed out in the literature, Fourier transform infrared (FT-IR) spectroscopy is emerging as a powerful tool in stem cell research. In this work we characterizedin situby FT-IR microspectroscopy the differentiation of murine embryonic stem cells (ES) to monitor possible changes in the cell macromolecular content during the early stages of differentiation. Undifferentiated and differentiating cells at 4, 7, 9 and 14 days were measured. Data were analyzed by the principal component and subsequent linear discriminant analyses (PCA–LDA) that enabled us to segregate ES cell spectra into well separate clusters and to identify the most significant spectral changes. Important changes in the lipid (3050–2800 cm–1), protein (1700–1600 cm–1) and in the nucleic acid (1050–850 cm–1) absorption regions were observed between days 4 to 7 of differentiation, indicating the appearance – at day 7 – of the new phenotype into cardiomyocyte precursors. Also the presence of DNA/RNA hybrid bands (954 cm–1and 899 cm–1) suggests that the transcriptional switch of the genome started at this stage of differentiation. Particularly noteworthy, we suggest that the 2936 cm–1shoulder we observed could reflect methyl group vibrations thus allowing the detection of variations in methylation levels of the stem cell during differentiation. These infrared results were found to be in agreement with the biochemical characterization of these differentiating cells, underlying the great potential of FT-IR spectroscopy in stem cell research

    Transgenic chloroplasts are efficient sites for high-yield production of the vaccinia virus envelope protein A27L in plant cells.

    Get PDF
    Orthopoxviruses (OPVs) have recently received increasing attention because of their potential use in bioterrorism and the occurrence of zoonotic OPV outbreaks, highlighting the need for the development of safe and cost-effective vaccines against smallpox and related viruses. In this respect, the production of subunit protein-based vaccines in transgenic plants is an attractive approach. For this purpose, the A27L immunogenic protein of vaccinia virus was expressed in tobacco using stable transformation of the nuclear or plastid genome. The vaccinia virus protein was expressed in the stroma of transplastomic plants in soluble form and accumulated to about 18% of total soluble protein (equivalent to approximately 1.7 mg/g fresh weight). This level of A27L accumulation was 500-fold higher than that in nuclear transformed plants, and did not decline during leaf development. Transplastomic plants showed a partial reduction in growth and were chlorotic, but reached maturity and set fertile seeds. Analysis by immunofluorescence microscopy indicated altered chlorophyll distribution. Chloroplast-synthesized A27L formed oligomers, suggesting correct folding and quaternary structure, and was recognized by serum from a patient recently infected by a zoonotic OPV. Taken together, these results demonstrate that chloroplasts are an attractive production vehicle for the expression of OPV subunit vaccines

    Interoception and mental health: a roadmap

    Get PDF
    Interoception refers to the process by which the nervous system senses, interprets, and integrates signals originating from within the body, providing a moment-by moment mapping of the body’s internal landscape across conscious and unconscious levels. Interoceptive signaling has been considered a component process of reflexes, urges, feelings, drives, adaptive responses, and cognitive and emotional experiences, highlighting its contributions to the maintenance of homeostatic functioning, body regulation, and survival. Dysfunction of interoception is increasingly recognized as an important component of different mental health conditions, including anxiety disorders, mood disorders, eating disorders, addictive disorders, and somatic symptom disorders. However, a number of conceptual and methodological challenges have made it difficult for interoceptive constructs to be broadly applied in mental health research and treatment settings. In November 2016, the Laureate Institute for Brain Research organized the first Interoception Summit, a gathering of interoception experts from around the world, with the goal of accelerating progress in understanding the role of interoception in mental health. The discussions at the meeting were organized around four themes: interoceptive assessment, interoceptive integration, interoceptive psychopathology, and the generation of a roadmap that could serve as a guide for future endeavors. This review article presents an overview of the emerging consensus generated by the meeting

    ARIA digital anamorphosis : Digital transformation of health and care in airway diseases from research to practice

    Get PDF
    Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.Peer reviewe

    Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19

    Get PDF
    Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe

    Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies

    Get PDF
    There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    ARIA digital anamorphosis: Digital transformation of health and care in airway diseases from research to practice

    Get PDF
    Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed
    corecore